Effect of guided inquiry on junior high school learners’ experimental design skills in solving chemistry problems

Authors

  • Luca Szalay Eötvös Loránd University image/svg+xml Author
  • Zoltán Tóth University of Debrecen image/svg+xml Author
  • Réka Borbás Szent István Secondary School Author
  • István Füzesi Eötvös Loránd University, Bolyai János Practising School Author

DOI:

https://doi.org/10.36681/tused.2025.030

Keywords:

Experimental design skills, guided inquiry, disciplinary content knowledge

Abstract

The main objective of this four-year empirical research project has been to develop the experimental design skills of 12-16 year-old Hungarian pupils in Grades 7–10 of junior high school through guided inquiry, using six chemistry experiment worksheets each school year. Group 1 (control group) and Group 2 follow step-by-step instructions, but after the experiment, Group 2 also answers a series of questions about the design of the experiment. Group 3 is required to design the experiments, guided by the series of questions. The impact of the intervention on 603 pupils' experimental design skills and disciplinary content knowledge were measured by structured tests at the beginning of the project and at the end of three school years. By the end of the third year the intervention only had a small positive effect on the development of experimental design skills in Group 3 (Cohen's d: 0.16), while the development of disciplinary content knowledge was slightly negatively affected for both experimental groups (Cohen's d for group 2: -0.07; Cohen's d for group 3: -0.19).

Downloads

Download data is not yet available.

References

Abraham, M. R., Craolice, M. S., Graves, A. P., Aldahmas, A. H., Kihega, J. G., Palma Gil J. G., & Varghese, V. (1997). The nature and state of general chemistry laboratory courses offered by colleges and universities in the United States. Journal of Chemical Education, 74(5), 591–594. https://doi.org/10.1021/ed074p591

Akuma, F. V., & Callaghan, R. (2019). A systematic review characterizing and clarifying intrinsic teaching challenges linked to inquiry-based practical work. Journal of Research in Science Teaching, 56(5), 619–648. https://doi.org/10.1002/tea.21516

Ardura D., & Pe ́rez-Bitria ́n A. (2018). The effect of motivation on the choice of chemistry in secondary schools: adaptation and validation of the Science Motivation Questionnaire II to Spanish pupils, Chemistry Education Research and Practice, 19(3), 905–918. https://doi.org/10.1039/C8RP00098K

Arifin, Z., Sukarmin, Saputro, S., & Kamari, A. (2025). The effect of inquiry-based learning on pupils’ critical thinking skills in science education: A systematic review and meta-analysis, EURASIA Journal of Mathematics, Science and Technology Education, 2025, 21(3), em2592, https://doi.org/10.29333/ejmste/15988

Arnold, J. C., Boone, W. J., Kremer, K., & Mayer, J. (2018). Assessment of competencies in scientific inquiry through the application of Rasch measurement techniques, Education Sciences, 8(4), 184–203. https://doi.org/10.3390/educsci8040184

Arnold, J. C., Mühling, A., & Kremer, K. (2021). Exploring core ideas of procedural understanding in scientific inquiry using educational data mining. Research in Science & Technological Education, 41(1), 1–21., https://doi.org/10.1080/02635143.2021.1909552

Baird, J. R. (1990). Metacognition, purposeful inquiry and conceptual change, In E. Hegarty-Hazel (Ed.), The pupil laboratory and the science curriculum (pp. 183−200). Routledge.

Banchi, H., & Bell R. (2008). The many levels of inquiry. Science and Children, 46(2), 26–29., The-Many-Levels-of-Inquiry-NSTA-article.pdf

Bloom B. S., Engelhart M. D., Furst E. J., Hill W. H., & Krathwohl D. R. (1956). Taxonomy of Educational Objectives: Part I, Cognitive Domain.

Bolte, C., Holbrook, J., & Rauch, F. (Eds.). (2012). Inquiry-based Science Education in Europe: Reflections from the PROFILES Project (pp. 9–67). Berlin: Freie Universität Berlin, Division of Chemistry Education. http://www.profiles-project.eu

Bruner, J. S. (1978). The role of dialogue in language acquisition. In A. Sinclair, R. J. Jarwelle, & W. J. M. Levelt (Eds.). The child’s concept of language (pp. 241–256.). Springer

Bunce, D. M., & Cole, R. S. (Eds.). (2007). Nuts and Bolts of Chemical Education Research. ACS SYMPOSIUM SERIES 976. American Chemical Society.

Burke, K. A., Greenbowe, T. J., & Hand, B. M. (2006). Implementing the Science Writing Heuristic in the chemistry laboratory. Journal of Chemical Education, 83(7), 1032–1038. https://doi.org/10.1021/ed083p1032

Cacciatore, K. L., & Sevian, H. (2009). Incrementally approaching an inquiry lab curriculum: Can changing a single laboratory experiment improve pupil performance in general chemistry? Journal of Chemical Education, 86(4), 498–505. https://doi.org/10.1021/ed086p498

Cannady, M. A., Vincent-Ruz, P., Chung, J. M., & Schunn, C. D. (2019). Scientific sensemaking supports science content learning across disciplines and instructional contexts. Contemporary Educational Psychology, 59(10), 101802. https://doi.org/10.1016/j.cedpsych.2019.101802

Chen Y.-Ch., Kimberley Wilson K. & Lin H.-sh., (2019). Identifying the challenging characteristics of systems thinking encountered by undergraduate students in chemistry problem-solving of gas laws, Chemistry Education Research and Practice, 20(3), 594–605. https://doi.org/10.1039/C9RP00070D

Chen, L., & Xiao, S. (2021). Perceptions, challenges and coping strategies of science teachers in teaching socioscientific issues: A systematic review. Educational Research Review, 32(2), 100377. https://doi.org/10.1016/j.edurev.2020.100377

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Routledge. https://doi.org/10.4324/9780203771587

Cooper, M. M. (2013). Chemistry and the Next Generation Science Standards. Journal of Chemical Education, 90(6), 679–680. https://doi.org/10.1021/ed400284c

Cothron, J. H., Giese, R. N., & Rezba, R. J. (2000). Pupils and Research: Practical Strategies for Science Classrooms and Competitions, 3rd ed. Dubuque, IA: Kendall/Hunt Publishing Company.

Crocker, L., & Algina, J. (2006). Introduction to Classical and Modern Test Theory, 2nd ed., Wadsworth Publishing Company.

Csíkos, Cs., Korom, E., & Csapó, B. (2016). Tartalmi keretek a kutatásalapú tanulás tudáselemeinek értékeléséhez a természettudományokban. Iskolakultúra, 26(3), 17–29. https://doi.org/10.17543/ISKKULT.2016.3.17

de Souza R., da Silva, M. d S. B., Barbato, D. M. L., de Guzzi, M. E- R., & Kasseboehmer, A. C. (2022). Motivation to learn chemistry: a thorough analysis of the CMQ-II within the Brazilian context, Chemistry Education Research and Practice, 23(4), 799–810. https://doi.org/10.1039/D2RP00107A

del Mar López-Fernández, M., González-García, F., & Franco-Mariscal, A. J. (2022). How can socio-scientific issues help develop critical thinking in chemistry education? A reflection on the problem of plastics. Journal of Chemical Education, 99(10), 3435–3442. doi: 10.1021/acs.jchemed.2c00223.

Domin, D. S. (1999). A Review of laboratory instruction styles. Journal of Chemical Education, 76(4), 543–547. https://doi.org/10.1021/ed076p543

Dumitrescu, C., Olteanu, R. L., Gorghiu, L. M., & Gorghiu, G. (2014). Learning chemistry in the frame of integrated science modules - Romanian pupils’ perception, Procedia - Social and Behavioral Sciences, 116, 2516–2520. https://doi.org/10.1016/j.sbspro.2014.01.603

Education and Training Monitor. (2020), Luxembourg: Publications Office of the European Union. https://doi.org/10.2766/984100

Farell, J. J., Moog, R. S., & Spencer, J. N. (1999). A guided-inquiry general chemistry course. Journal of Chemical Education, 76(4), 570–574. https://doi.org/10.1021/ed076p570

Fay M. E., Grove N. P., Towns M. H. and Bretz S. L., (2007), A rubric to characterize inquiry in the undergraduate chemistry laboratory. Chemistry Education Research and Practice, 8(2), 212−219. https://doi.org/10.1039/B6RP90031C

Goodey, N. M., & Talgar, C. P. (2016). Guided inquiry in a biochemistry laboratory course improves experimental design ability. Chemistry Education Research and Practice, 17(4), 1127–1144. https://doi.org/10.1039/C6RP00142D

Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge.

Howell, D. C. (2012). Statistical methods for psychology. Cengage Learning.

Johnstone, A. H., & Wham, A. J. B. (1982). The demands of practical work. Education in Chemistry, 19(3), 71–73.

Karplus, R., & Thier, H. (1967). A New Look at Elementary School Science. Rand-McNally.

Klemeš, J. J., Fan, Y. V., & Jiang, P. (2021). Plastics: friends or foes? The circularity and plastic waste footprint. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(13), 1549−1565. https://doi.org/10.1080/15567036.2020.1801906

Komperda, R., Hosbein, K. N., Phillips, M. M., & Barbera, J. (2020). Investigation of evidence for the internal structure of a modified science motivation questionnaire II (mSMQ II): a failed attempt to improve instrument functioning across course, subject, and wording variants, Chemistry Education Research and Practice, 21(3), 893–907. https://doi.org/10.1039/D0RP00029A

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory Into Practice, 41(4), 212–218. https://doi.org/10.1207/s15430421tip4104_2

Lawrie, G. (2021). Considerations of sample size in chemistry education research: numbers do count but context matters more! Chemistry Education Research and Practice, 22(4), 809–812. https://doi.org/10.1039/D1RP90009A

Lawrie, G. A., Graulich, N., Kahveci, A., & Lewis, S. E. (2021). Ethical statements: a refresher of the minimum requirements for publication of Chemistry Education Research and Practice articles, Chemistry Education Research and Practice, 22(2), 234–236. https://doi.org/10.1039/D1RP90003J

Lawson, A. E., Abraham, M. R., & Renner, J. W. (1989). A Theory of Instruction Using the Learning Cycle to Teach Science Concepts and Thinking Skills. Monograph, Number One; National Association for Research in Science Teaching: Kansas State University, Manhatten, KS.

Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of guidance. Review of Educational Research, 86(3), 681–718. https://doi.org/10.3102/0034654315627366

Lee, H.-S., Gweon, G.-H., Webb, A., Damelin, D., Dorsey, C. (2024). Measuring epistemic knowledge development related to scientific experimentation practice: A construct modeling approach, Science Education, 108(2), 383-411. https://doi.org/10.1002/sce.21836

Legjobbiskola. (n.d.). Ranking of Hungarian schools. Retrieved October 4, 2021, from Rangsorok | legjobbiskola.hu

MacDonald, R. P., Pattison, A. N., Cornell, S. E., Elgersma, A. K., Greidanus, S. N., Visser, S. N., Hoffman, M., & Mahaffy, P. G. (2022). An interactive planetary boundaries systems thinking learning tool to integrate sustainability into the chemistry curriculum. Journal of Chemical Education, 99(10), 3530−3539. https://doi.org/10.1021/acs.jchemed.2c00659

Mack, M. R., Hensen, C., & Barbera, J. (2019). Metrics and methods used to compare pupil performance data in chemistry education research articles. Journal of Chemical Education, 96(3), 401–413. https://doi.org/10.1021/acs.jchemed.8b00713

Matthews, M. R. (Ed.). (2018). History, Philosophy and Science Teaching – New Perspectives, Springer. https://doi.org/10.1007/978-3-319-62616-1

McLoughlin, E., Finlayson, O., McCabe, D., & Brady, S. (2015). IBSE Teaching & Learning Units, Volume 2, Chemistry, ESTABLISH Project. http://www.establish-fp7.eu/sites/default/files/general/Chemistry.pdf

MTA-ELTE Research Group. (n.d.). MTA-ELTE Research Group on Inquiry-Based Chemistry Education, Inquiry-Based Chemistry Education and Systems Thinking Project. Retrieved September 17, 2025, from Természettudományos Oktatásmódszertani Centrum

National Core Curriculum of Hungary. (2020). 5/2020. (I. 31.) Korm. rendelet A Nemzeti alaptanterv kiadásáról, bevezetéséről és alkalmazásáról szóló 110/2012. (VI. 4.) Korm. rendelet módosításáról, Magyar Közlöny, 2020. jan. 31., 17, pp. 290–446. Retrieved March 5, 2025, from: A Kormány 5/2020. (I. 31.) Korm. rendelete a Nemzeti alaptanterv kiadásáról, bevezetéséről és alkalmazásáról szóló 110/2012. (VI. 4.) Korm. rendelet módosításáról – eGov Hírlevél

Neri, N. C., Guill, K., & Retelsdorf, J. (2021). Language in science performance: Do good readers perform better? European Journal of Psychology of Education, 36(1), 45–61. https://doi.org/10.1007/s10212-019-00453-5

OECD. (2005). Teachers matter: Attracting, developing and retaining effective teachers. Overview. OECD, p.2. Teachers Matter | OECD

Pedaste, M., Maeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.02.003

Piaget, J. (1963). The Origins of Intelligence in Children. Norton.

Reed, J. J., & Holme, T. A. (2014). The Role of Non-Content Goals in the Assessment of Chemistry Learning. In: L. K. Kendhammer, & K. L. Murphy (Eds.), Innovative Uses of Assessment for Teaching and Research, American Chemical Society (pp. 147–160.) https://doi.org/10.1021/BK-2014-1182.CH009

Reid N. & Amanat Ali A. (2020). Making Sense of Learning, Springer Nature Switzerland, AG.

Restucia, D., Taska, B., & Bittle S. (2018, March 14.). Different Skills, Different Gaps: Measuring and Closing the Skills Gap, Burning Glass Technologies, U.S. Chamber of Commerce Foundation. Different Skills, Different Gaps: Measuring and Closing the Skills Gap | U.S. Chamber of Commerce Foundation

Reynders, G., Suh, E., Cole, R. S., & Sansom, R. L. (2019). Developing pupil process skills in a general chemistry laboratory. Journal of Chemical Education, 96(10), 2109−2119. https://doi.org/10.1021/acs.jchemed.9b00441

Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H., & Hemmo, V. (2007). Science Education NOW: A Renewed Pedagogy for the Future of Europe. European Commision. Directorate-General for Research. rapportrocardfinal.pdf (europa.eu)

Rodriguez, J. M. G., & Towns, M. H. (2018). Modifying laboratory experiments to promote engagement in critical thinking by reframing prelab and postlab questions. Journal of Chemical Education, 95(12), 2141–2147. https://doi.org/10.1021/acs.jchemed.8b00683

Rodriguez, J-M. G., Hunter, K. H., Scharlott, L. J., & Becker, N. M. (2020). A Review of research on Process Oriented Guided Inquiry Learning: Implications for research and practice. Journal of Chemical Education, 97(10), 3506–3520. https://doi.org/10.1021/acs.jchemed.0c00355

Rodríguez-Berrios, R. R., & Rodríguez-Vargas, J. A. (2025). Development of an accessible guided-inquiry laboratory experiment for undergraduate food chemistry pupils through qualitative analysis of lipid oxidation in fats and oils. Journal of Chemical Education, 102(2), 737–745. https://doi.org/10.1021/acs.jchemed.4c00514

Salta, K. & Koulougliotis, D. (2015). Assessing motivation to learn chemistry: adaptation and validation of Science Motivation Questionnaire II with Greek secondary school pupils, Chemistry Education Research and Practice, 16(2), 237–250. https://doi.org/10.1039/C4RP00196F

Savec, V. F., & Devetak, I. (2013), Evaluating the effectiveness of pupils’ active learning in chemistry. Procedia - Social and Behavioral Sciences, 106, 1113 – 1121. https://doi.org/10.1016/j.sbspro.2013.12.125

Schafer, A. G. L., Kuborn, T. M., Cara, E., Schwarz, C. E., Deshaye, M. Y., & Stowe, R. L. (2023). Messages about valued knowledge products and processes embedded within a suite of transformed high school chemistry curricular materials. Chemistry Education Research and Practice, 24(1), 71–88. https://doi.org/10.1039/D2RP00124A

Schoffstall, A. M., & Gaddis, B. A. (2007). Incorporating guided-inquiry learning into the organic chemistry laboratory. Journal of Chemical Education, 84(5), 848. https://doi.org/10.1021/ed084p848

Schumm M. F. & Bogner F. X. (2016). Measuring adolescent science motivation, International Journal of Science Education, 38(3), 434–449. https://doi.org/10.1080/09500693.2016.1147659

Schunk, D. H., Pintrich, P. R. & Meece, J. L., (2014), Motivation in education: theory, research and applications, Upper Saddle River, Pearson.

Science Olympiad (2020), Experimental design Division C Checklist, Part I – Design and Construction of the Experiment. https://www.soinc.org/sites/default/files/uploaded_files/Experimental_Design_Checklist_Division_C.pdf

Seery, M. K., Jones, A. B., Kew, W., & Mein, T. (2019). Unfinished recipes: Structuring upper-division laboratory work to scaffold experimental design skills. Journal of Chemical Education, 96(1), 53–59. https://doi.org/10.1021/acs.jchemed.8b00511

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and Quasi-Experimental designs for Generalized Causal Inference. Houghton Mifflin and Company.

Siegler, R. S., Deloache, J. S., & Eisenberg, N. (2010). Study Guide for How Children Develop. Worth Publishers.

Sirum, K., & Humburg, J. (2011), The Experimental design Ability Test (EDAT), Bioscene: Journal of College Biology Teaching, 37(1) 8–16. Bioscene

Snook, I., Clark, J., Harker, R., O’Neil, A.-M., & O’Neil, J. G. (2009). Invisible learnings: A commentary on John Hattie's book Visible learning: A synthesis of over 800 metaanalyses relating to achievement, New Zealand Journal of Educational Studies, 44(1), 93–106. (PDF) Invisible Learnings: A commentary on John Hattie's book visible learning: A synthesis of over 800 metaanalyses relating to achievement

Szalay, L., Tóth. Z., & Borbás, R. (2021). Teaching of experimental design skills: results from a longitudinal study. Chemistry Education Research and Practice, 22(4), 1054–1073. https://doi.org/10.1039/D0RP00338G

Szalay, L., Tóth, Z., & Kiss, E. (2020). Introducing students to experimental design skills. Chemistry Education Research and Practice, 21(1), 331–356. https://doi.org/10.1039/C9RP00234K

Szalay, L., & Tóth Z. (2016). An inquiry-based approach of traditional ’step-by-step’ experiments. Chemistry Education Research and Practice, 17(4), 923–961. https://doi.org/10.1039/C6RP00044D

Szalay, L., Tóth, Z., Borbás, R., & Füzesi, I. (2023). Scaffolding of experimental design skills. Chemistry Education Research and Practice, 24(2), 599–623. https://doi.org/10.1039/D2RP00260D

Szalay, L., Tóth, Z., Borbás, R. & Füzesi, I. (2024) Progress in developing experimental design skills among junior high school learners; Journal of Turkish Science Education. 21(3), 484-511. https://doi.org/10.36681/tused.2024.026

Szozda, A. R., Bruyere, K., Lee, H., Mahaffy, P. G., & Flynn, A. B. (2022). Investigating educators’ perspectives toward systems thinking in chemistry education from international contexts. Journal of Chemical Education, 99(7), 2474−2483. https://doi.org/10.1021/acs.jchemed.2c00138

Tosun, C. (2019). Scientific process skills test development within the topic ‘‘Matter and its Nature’’ and the predictive effect of different variables on 7th and 8th grade pupils’ scientific process skill levels, Chemistry Education Research and Practice, 20(1), 160−174. https://doi.org/10.1039/C8RP00071A

Tseng, Y-J., Hong, Z-R., & Lin, H-s. (2022). Advancing pupils’ scientific inquiry performance in chemistry through reading and evaluative reflection. Chemistry Education Research and Practice, 23(3), 616–627. https://doi.org/10.1039/D1RP00246E

Underwood, S. M., Posey, L. A., Herrington, D. G., Carmel, J. H., & Cooper, M. M. (2018). Adapting assessment tasks to support three-dimensional learning. Journal of Chemical Education, 95(2), 207–217. https://doi.org/10.1021/acs.jchemed.7b00645

van Brederode, M. E., Zoon, S. A., & Meeter, M. (2020). Examining the effect of lab instructions on pupils’ critical thinking during a chemical inquiry practical. Chemistry Education Research and Practice, 21(4), 1173−1182. https://doi.org/10.1039/D0RP00020E

Vedder-Weiss, D., & Fortus, D. (2011). Adolescents’ declining motivation to learn science: Inevitable or not? Journal of Research in Science Teaching, 48(2), 199–216. https://doi.org/10.1002/tea.20398

Vedder-Weiss, D., & Fortus, D. (2013). School, teacher, peers, and parents’ goals emphases and adolescents’ motivation to learn science in and out of school. Journal of Research in Science Teaching, 50(8), 952–988. https://doi.org/10.1002/tea.21103

Vélemények az MTA-ELTE (n.d.) Vélemények az MTA-ELTE Kutatásalapú Kémiatanítás Kutatócsoport által a 2021/2022. tanévben készített kísérlettervező feladatlapokról. Retrieved September 17, 2025, from https://docs.google.com/forms/d/e/1FAIpQLScSv8PJKOYe7ArEI-ClhdCC4VT2Eg-ju4BGaX_kWL-3o--YoQ/viewform

Vorholzer, A., Von Aufschnaiter, C., & Boone, W. J. (2020). Fostering upper secondary pupils’ ability to engage in practices of scientific investigation: A comparative analysis of an explicit and an implicit instructional approach. Research in Science Education, 50(1), 333–359. https://doi.org/10.1007/s11165-018-9691-1

Walker, J. P., & Sampson, V. (2013). Learning to argue and arguing to learn: Argument-Driven Inquiry as a way to help undergraduate chemistry pupils learn how to construct arguments and engage in argumentation during a laboratory course. Journal of Research in Science Teaching, 50(5), 561−596. https://doi.org/10.1002/tea.21082

Walker, M. (2007). Teaching inquiry-based science. Lightning Source, LaVergne, TN.

Walters, Y. B., & Soyibo, K. (2001). An analysis of high school pupil’s performance on five integrated science process skills. Research in Science and Technological Education, 19(2), 133–143. https://doi.org/10.1080/02635140120087687

Watts, F. M., & Finkenstaedt-Quinn, S. A. (2021). The current state of methods for establishing reliability in qualitative chemistry education research articles. Chemistry Education Research and Practice, 22(3), 565–578. https://doi.org/10.1039/D1RP00007A

Wren, D., & Barbera, J. (2013). Gathering evidence for validity during the design, development, and qualitative evaluation of thermochemistry concept inventory items. Journal of Chemical Education, 90(12), 1590–1601. https://doi.org/10.1021/ed400384g

York, S., & Orgill, M. (2020). ChEMIST Table: A tool for designing or modifying instruction for a Systems Thinking Approach in chemistry education. Journal of Chemical Education, 97(8), 2114−2129. https://doi.org/10.1021/acs.jchemed.0c00382

Zhang, J., & Zhou, Q. (2023). Chinese Chemistry Motivation Questionnaire II: Adaptation and validation of the Science Motivation Questionnaire II in high school pupils. Chemistry Education Research and Practice, 24(1), 369–383. https://doi.org/10.1039/D2RP00243D

Downloads

Published

01.10.2025

How to Cite

Szalay, L., Tóth, Z., Borbás, R., & Füzesi, I. (2025). Effect of guided inquiry on junior high school learners’ experimental design skills in solving chemistry problems. Journal of Turkish Science Education, 22(3), 584-611. https://doi.org/10.36681/tused.2025.030